Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 7: 564795, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33426012

RESUMO

Liver fluke infection (fascioliasis) is a parasitic disease which affects the health and welfare of ruminants. It is a concern for the livestock industry and is considered as a growing threat to the industry because changing climatic conditions are projected to be more favorable to increased frequency and intensity of liver fluke outbreaks. Recent reports highlighted that the incidence and geographic range of liver fluke has increased in the UK over the last decade and estimated to increase the average risk of liver fluke in the UK due to increasing temperature and rainfall. This paper explores financial impacts of the disease with and without climate change effects on Scottish livestock farms using a farm-level economic model. The model is based on farming system analysis and uses linear programming technique to maximize farm net profit within farm resources. Farm level data from a sample of 160 Scottish livestock farms is used under a no disease baseline scenario and two disease scenarios (with and without climate change). These two disease scenarios are compared with the baseline scenario to estimate the financial impact of the disease at farm levels. The results suggest a 12% reduction in net profit on an average dairy farm compared to 6% reduction on an average beef farm under standard disease conditions. The losses increase by 2-fold on a dairy farm and 6-fold on a beef farm when climate change effects are included with disease conditions on farms. There is a large variability within farm groups with profitable farms incurring relatively lesser economic losses than non-profitable farms. There is a substantial increase in number of vulnerable farms both in dairy (+20%) and beef farms (+27%) under the disease alongside climate change conditions.

2.
J R Soc Interface ; 16(152): 20180901, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30836896

RESUMO

Culling wildlife to control disease can lead to both decreases and increases in disease levels, with apparently conflicting responses observed, even for the same wildlife-disease system. There is therefore a pressing need to understand how culling design and implementation influence culling's potential to achieve disease control. We address this gap in understanding using a spatial metapopulation model representing wildlife living in distinct groups with density-dependent dispersal and framed on the badger-bovine tuberculosis (bTB) system. We show that if population reduction is too low, or too few groups are targeted, a 'perturbation effect' is observed, whereby culling leads to increased movement and disease spread. We also demonstrate the importance of culling across appropriate time scales, with otherwise successful control strategies leading to increased disease if they are not implemented for long enough. These results potentially explain a number of observations of the dynamics of both successful and unsuccessful attempts to control TB in badgers including the Randomized Badger Culling Trial in the UK, and we highlight their policy implications. Additionally, for parametrizations reflecting a broad range of wildlife-disease systems, we characterize 'Goldilocks zones', where, for a restricted combination of culling intensity, coverage and duration, the disease can be reduced without driving hosts to extinction.


Assuntos
Animais Selvagens , Mustelidae , Tuberculose Bovina , Animais , Bovinos , Dinâmica Populacional , Tuberculose Bovina/epidemiologia , Tuberculose Bovina/prevenção & controle , Tuberculose Bovina/transmissão
3.
Vet Rec ; 182(22): 634, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29445012

RESUMO

Paratuberculosis (Johne's disease) is caused by the bacterium Mycobacterium avium subspecies paratuberculosis (Map). Achieving herd-level control of mycobacterial infection is notoriously difficult, despite widespread adoption of test-and-cull-based control strategies. The presence of infection in wildlife populations could be contributing to this difficulty. Rabbits are naturally infected with the same Map strain as cattle, and can excrete high levels in their faeces. The aim of this study is to determine if implementation of paratuberculosis control in cattle leads to a decline in Map infection levels in rabbits. An island-wide, test-and-cull-based paratuberculosis control programme was initiated on a Scottish island in 2008. In this study annual tests were obtained from 15 cattle farms, from 2008 to 2011, totalling 2609 tests. Rabbits (1564) were sampled from the 15 participating farms, from 2008 to 2011, and Map was detected by faecal culture. Map seroprevalence in cattle decreased from 16 to 7.2 per cent, while Map prevalence in rabbits increased from 10.3 to 20.3 per cent. Results indicate that efforts to control paratuberculosis in cattle do not reduce Map levels in sympatric rabbits. This adds to mounting evidence that if Map becomes established in wild rabbit populations, rabbits represent a persistent and widespread source of infection, potentially impeding livestock control strategies.


Assuntos
Doenças dos Bovinos/prevenção & controle , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/epidemiologia , Paratuberculose/prevenção & controle , Coelhos/microbiologia , Animais , Bovinos , Fezes/microbiologia , Feminino , Masculino , Prevalência , Escócia/epidemiologia , Estudos Soroepidemiológicos
4.
Environ Res ; 151: 130-144, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27475053

RESUMO

Climate change has the potential to impair livestock health, with consequences for animal welfare, productivity, greenhouse gas emissions, and human livelihoods and health. Modelling has an important role in assessing the impacts of climate change on livestock systems and the efficacy of potential adaptation strategies, to support decision making for more efficient, resilient and sustainable production. However, a coherent set of challenges and research priorities for modelling livestock health and pathogens under climate change has not previously been available. To identify such challenges and priorities, researchers from across Europe were engaged in a horizon-scanning study, involving workshop and questionnaire based exercises and focussed literature reviews. Eighteen key challenges were identified and grouped into six categories based on subject-specific and capacity building requirements. Across a number of challenges, the need for inventories relating model types to different applications (e.g. the pathogen species, region, scale of focus and purpose to which they can be applied) was identified, in order to identify gaps in capability in relation to the impacts of climate change on animal health. The need for collaboration and learning across disciplines was highlighted in several challenges, e.g. to better understand and model complex ecological interactions between pathogens, vectors, wildlife hosts and livestock in the context of climate change. Collaboration between socio-economic and biophysical disciplines was seen as important for better engagement with stakeholders and for improved modelling of the costs and benefits of poor livestock health. The need for more comprehensive validation of empirical relationships, for harmonising terminology and measurements, and for building capacity for under-researched nations, systems and health problems indicated the importance of joined up approaches across nations. The challenges and priorities identified can help focus the development of modelling capacity and future research structures in this vital field. Well-funded networks capable of managing the long-term development of shared resources are required in order to create a cohesive modelling community equipped to tackle the complex challenges of climate change.


Assuntos
Mudança Climática , Gado , Modelos Teóricos , Criação de Animais Domésticos , Animais
5.
R Soc Open Sci ; 2(5): 140296, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26064647

RESUMO

Parasitic nematodes represent one of the most pervasive and significant challenges to grazing livestock, and their intensity and distribution are strongly influenced by climate. Parasite levels and species composition have already shifted under climate change, with nematode parasite intensity frequently low in newly colonized areas, but sudden large-scale outbreaks are becoming increasingly common. These outbreaks compromise both food security and animal welfare, yet there is a paucity of predictions on how climate change will influence livestock parasites. This study aims to assess how climate change can affect parasite risk. Using a process-based approach, we determine how changes in temperature-sensitive elements of outbreaks influence parasite dynamics, to explore the potential for climate change to influence livestock helminth infections. We show that changes in temperate-sensitive parameters can result in nonlinear responses in outbreak dynamics, leading to distinct 'tipping-points' in nematode parasite burdens. Through applying two mechanistic models, of varying complexity, our approach demonstrates that these nonlinear responses are robust to the inclusion of a number of realistic processes that are present in livestock systems. Our study demonstrates that small changes in climatic conditions around critical thresholds may result in dramatic changes in parasite burdens.

6.
PLoS One ; 8(11): e77996, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223133

RESUMO

Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts' immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites' free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance) can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes is required to fully understand transmission dynamics. Understanding of both physiological and behavioural defence strategies will aid the development of novel approaches for control.


Assuntos
Helmintíase Animal/transmissão , Helmintos/fisiologia , Herbivoria , Interações Hospedeiro-Parasita , Imunidade Adaptativa , Animais , Fezes/parasitologia , Helmintíase Animal/parasitologia , Helmintos/imunologia , Larva/fisiologia , Modelos Biológicos , Ruminantes/parasitologia , Estações do Ano , Processos Estocásticos
7.
Animals (Basel) ; 2(1): 93-107, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-26486780

RESUMO

Climate change is a driving force for livestock parasite risk. This is especially true for helminths including the nematodes Haemonchus contortus, Teladorsagia circumcincta, Nematodirus battus, and the trematode Fasciola hepatica, since survival and development of free-living stages is chiefly affected by temperature and moisture. The paucity of long term predictions of helminth risk under climate change has driven us to explore optimal modelling approaches and identify current bottlenecks to generating meaningful predictions. We classify approaches as correlative or mechanistic, exploring their strengths and limitations. Climate is one aspect of a complex system and, at the farm level, husbandry has a dominant influence on helminth transmission. Continuing environmental change will necessitate the adoption of mitigation and adaptation strategies in husbandry. Long term predictive models need to have the architecture to incorporate these changes. Ultimately, an optimal modelling approach is likely to combine mechanistic processes and physiological thresholds with correlative bioclimatic modelling, incorporating changes in livestock husbandry and disease control. Irrespective of approach, the principal limitation to parasite predictions is the availability of active surveillance data and empirical data on physiological responses to climate variables. By combining improved empirical data and refined models with a broad view of the livestock system, robust projections of helminth risk can be developed.

8.
PLoS One ; 6(1): e16126, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21249228

RESUMO

Fasciola hepatica (liver fluke) is a physically and economically devastating parasitic trematode whose rise in recent years has been attributed to climate change. Climate has an impact on the free-living stages of the parasite and its intermediate host Lymnaea truncatula, with the interactions between rainfall and temperature having the greatest influence on transmission efficacy. There have been a number of short term climate driven forecasts developed to predict the following season's infection risk, with the Ollerenshaw index being the most widely used. Through the synthesis of a modified Ollerenshaw index with the UKCP09 fine scale climate projection data we have developed long term seasonal risk forecasts up to 2070 at a 25 km square resolution. Additionally UKCIP gridded datasets at 5 km square resolution from 1970-2006 were used to highlight the climate-driven increase to date. The maps show unprecedented levels of future fasciolosis risk in parts of the UK, with risk of serious epidemics in Wales by 2050. The seasonal risk maps demonstrate the possible change in the timing of disease outbreaks due to increased risk from overwintering larvae. Despite an overall long term increase in all regions of the UK, spatio-temporal variation in risk levels is expected. Infection risk will reduce in some areas and fluctuate greatly in others with a predicted decrease in summer infection for parts of the UK due to restricted water availability. This forecast is the first approximation of the potential impacts of climate change on fasciolosis risk in the UK. It can be used as a basis for indicating where active disease surveillance should be targeted and where the development of improved mitigation or adaptation measures is likely to bring the greatest benefits.


Assuntos
Mudança Climática , Fasciola hepatica , Fasciolíase/transmissão , Animais , Epidemias , Previsões , Humanos , Risco , Estações do Ano , Reino Unido , País de Gales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...